Metamath Proof Explorer


Theorem retps

Description: The standard topological space on the reals. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypothesis retps.k
|- K = { <. ( Base ` ndx ) , RR >. , <. ( TopSet ` ndx ) , ( topGen ` ran (,) ) >. }
Assertion retps
|- K e. TopSp

Proof

Step Hyp Ref Expression
1 retps.k
 |-  K = { <. ( Base ` ndx ) , RR >. , <. ( TopSet ` ndx ) , ( topGen ` ran (,) ) >. }
2 uniretop
 |-  RR = U. ( topGen ` ran (,) )
3 retop
 |-  ( topGen ` ran (,) ) e. Top
4 1 2 3 eltpsi
 |-  K e. TopSp