Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reu6i | |- ( ( B e. A /\ A. x e. A ( ph <-> x = B ) ) -> E! x e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = B -> ( x = y <-> x = B ) ) |
|
| 2 | 1 | bibi2d | |- ( y = B -> ( ( ph <-> x = y ) <-> ( ph <-> x = B ) ) ) |
| 3 | 2 | ralbidv | |- ( y = B -> ( A. x e. A ( ph <-> x = y ) <-> A. x e. A ( ph <-> x = B ) ) ) |
| 4 | 3 | rspcev | |- ( ( B e. A /\ A. x e. A ( ph <-> x = B ) ) -> E. y e. A A. x e. A ( ph <-> x = y ) ) |
| 5 | reu6 | |- ( E! x e. A ph <-> E. y e. A A. x e. A ( ph <-> x = y ) ) |
|
| 6 | 4 5 | sylibr | |- ( ( B e. A /\ A. x e. A ( ph <-> x = B ) ) -> E! x e. A ph ) |