| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmoanim.1 |
|- F/ x ph |
| 2 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 3 |
2
|
a1i |
|- ( x e. A -> ( ( ph /\ ps ) -> ph ) ) |
| 4 |
1 3
|
rexlimi |
|- ( E. x e. A ( ph /\ ps ) -> ph ) |
| 5 |
4
|
adantr |
|- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> ph ) |
| 6 |
|
simpr |
|- ( ( ph /\ ps ) -> ps ) |
| 7 |
6
|
reximi |
|- ( E. x e. A ( ph /\ ps ) -> E. x e. A ps ) |
| 8 |
7
|
adantr |
|- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> E. x e. A ps ) |
| 9 |
|
nfre1 |
|- F/ x E. x e. A ( ph /\ ps ) |
| 10 |
4
|
adantr |
|- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ph ) |
| 11 |
10
|
a1d |
|- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ps -> ph ) ) |
| 12 |
11
|
ancrd |
|- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ps -> ( ph /\ ps ) ) ) |
| 13 |
6 12
|
impbid2 |
|- ( ( E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ( ph /\ ps ) <-> ps ) ) |
| 14 |
9 13
|
rmobida |
|- ( E. x e. A ( ph /\ ps ) -> ( E* x e. A ( ph /\ ps ) <-> E* x e. A ps ) ) |
| 15 |
14
|
biimpa |
|- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> E* x e. A ps ) |
| 16 |
5 8 15
|
jca32 |
|- ( ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) -> ( ph /\ ( E. x e. A ps /\ E* x e. A ps ) ) ) |
| 17 |
|
reu5 |
|- ( E! x e. A ( ph /\ ps ) <-> ( E. x e. A ( ph /\ ps ) /\ E* x e. A ( ph /\ ps ) ) ) |
| 18 |
|
reu5 |
|- ( E! x e. A ps <-> ( E. x e. A ps /\ E* x e. A ps ) ) |
| 19 |
18
|
anbi2i |
|- ( ( ph /\ E! x e. A ps ) <-> ( ph /\ ( E. x e. A ps /\ E* x e. A ps ) ) ) |
| 20 |
16 17 19
|
3imtr4i |
|- ( E! x e. A ( ph /\ ps ) -> ( ph /\ E! x e. A ps ) ) |
| 21 |
|
ibar |
|- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ x e. A ) -> ( ps <-> ( ph /\ ps ) ) ) |
| 23 |
1 22
|
reubida |
|- ( ph -> ( E! x e. A ps <-> E! x e. A ( ph /\ ps ) ) ) |
| 24 |
23
|
biimpa |
|- ( ( ph /\ E! x e. A ps ) -> E! x e. A ( ph /\ ps ) ) |
| 25 |
20 24
|
impbii |
|- ( E! x e. A ( ph /\ ps ) <-> ( ph /\ E! x e. A ps ) ) |