Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | reuanid | |- ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabs5 | |- ( ( x e. A /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ph ) ) |
|
2 | 1 | eubii | |- ( E! x ( x e. A /\ ( x e. A /\ ph ) ) <-> E! x ( x e. A /\ ph ) ) |
3 | df-reu | |- ( E! x e. A ( x e. A /\ ph ) <-> E! x ( x e. A /\ ( x e. A /\ ph ) ) ) |
|
4 | df-reu | |- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
|
5 | 2 3 4 | 3bitr4i | |- ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph ) |