Metamath Proof Explorer


Theorem reuanid

Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018)

Ref Expression
Assertion reuanid
|- ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph )

Proof

Step Hyp Ref Expression
1 anabs5
 |-  ( ( x e. A /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ph ) )
2 1 eubii
 |-  ( E! x ( x e. A /\ ( x e. A /\ ph ) ) <-> E! x ( x e. A /\ ph ) )
3 df-reu
 |-  ( E! x e. A ( x e. A /\ ph ) <-> E! x ( x e. A /\ ( x e. A /\ ph ) ) )
4 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
5 2 3 4 3bitr4i
 |-  ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph )