Metamath Proof Explorer


Theorem reuanid

Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018) (Proof shortened by Wolf Lammen, 12-Jan-2025)

Ref Expression
Assertion reuanid
|- ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph )

Proof

Step Hyp Ref Expression
1 ibar
 |-  ( x e. A -> ( ph <-> ( x e. A /\ ph ) ) )
2 1 bicomd
 |-  ( x e. A -> ( ( x e. A /\ ph ) <-> ph ) )
3 2 reubiia
 |-  ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph )