Metamath Proof Explorer


Theorem reuanidOLD

Description: Obsolete version of reuanid as of 12-Jan-2025. (Contributed by Peter Mazsa, 12-Feb-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion reuanidOLD
|- ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph )

Proof

Step Hyp Ref Expression
1 anabs5
 |-  ( ( x e. A /\ ( x e. A /\ ph ) ) <-> ( x e. A /\ ph ) )
2 1 eubii
 |-  ( E! x ( x e. A /\ ( x e. A /\ ph ) ) <-> E! x ( x e. A /\ ph ) )
3 df-reu
 |-  ( E! x e. A ( x e. A /\ ph ) <-> E! x ( x e. A /\ ( x e. A /\ ph ) ) )
4 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
5 2 3 4 3bitr4i
 |-  ( E! x e. A ( x e. A /\ ph ) <-> E! x e. A ph )