Metamath Proof Explorer


Theorem reubidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996)

Ref Expression
Hypothesis reubidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion reubidv
|- ( ph -> ( E! x e. A ps <-> E! x e. A ch ) )

Proof

Step Hyp Ref Expression
1 reubidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 reubidva
 |-  ( ph -> ( E! x e. A ps <-> E! x e. A ch ) )