Metamath Proof Explorer


Theorem reueq

Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Assertion reueq
|- ( B e. A <-> E! x e. A x = B )

Proof

Step Hyp Ref Expression
1 risset
 |-  ( B e. A <-> E. x e. A x = B )
2 moeq
 |-  E* x x = B
3 mormo
 |-  ( E* x x = B -> E* x e. A x = B )
4 2 3 ax-mp
 |-  E* x e. A x = B
5 reu5
 |-  ( E! x e. A x = B <-> ( E. x e. A x = B /\ E* x e. A x = B ) )
6 4 5 mpbiran2
 |-  ( E! x e. A x = B <-> E. x e. A x = B )
7 1 6 bitr4i
 |-  ( B e. A <-> E! x e. A x = B )