Metamath Proof Explorer


Theorem reueq1

Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Avoid ax-8 . (Revised by Wolf Lammen, 12-Mar-2025)

Ref Expression
Assertion reueq1
|- ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )

Proof

Step Hyp Ref Expression
1 rexeq
 |-  ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) )
2 rmoeq1
 |-  ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) )
3 1 2 anbi12d
 |-  ( A = B -> ( ( E. x e. A ph /\ E* x e. A ph ) <-> ( E. x e. B ph /\ E* x e. B ph ) ) )
4 reu5
 |-  ( E! x e. A ph <-> ( E. x e. A ph /\ E* x e. A ph ) )
5 reu5
 |-  ( E! x e. B ph <-> ( E. x e. B ph /\ E* x e. B ph ) )
6 3 4 5 3bitr4g
 |-  ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )