Metamath Proof Explorer


Theorem reueq1

Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023)

Ref Expression
Assertion reueq1
|- ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( A = B -> ( x e. A <-> x e. B ) )
2 1 anbi1d
 |-  ( A = B -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) )
3 2 eubidv
 |-  ( A = B -> ( E! x ( x e. A /\ ph ) <-> E! x ( x e. B /\ ph ) ) )
4 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
5 df-reu
 |-  ( E! x e. B ph <-> E! x ( x e. B /\ ph ) )
6 3 4 5 3bitr4g
 |-  ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )