Metamath Proof Explorer


Theorem reueq1OLD

Description: Obsolete version of reueq1 as of 12-Mar-2025. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion reueq1OLD
|- ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( A = B -> ( x e. A <-> x e. B ) )
2 1 anbi1d
 |-  ( A = B -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) )
3 2 eubidv
 |-  ( A = B -> ( E! x ( x e. A /\ ph ) <-> E! x ( x e. B /\ ph ) ) )
4 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
5 df-reu
 |-  ( E! x e. B ph <-> E! x ( x e. B /\ ph ) )
6 3 4 5 3bitr4g
 |-  ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )