Metamath Proof Explorer


Theorem reueq1f

Description: Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004) (Revised by Andrew Salmon, 11-Jul-2011)

Ref Expression
Hypotheses rmoeq1f.1
|- F/_ x A
rmoeq1f.2
|- F/_ x B
Assertion reueq1f
|- ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )

Proof

Step Hyp Ref Expression
1 rmoeq1f.1
 |-  F/_ x A
2 rmoeq1f.2
 |-  F/_ x B
3 1 2 rexeqf
 |-  ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) )
4 1 2 rmoeq1f
 |-  ( A = B -> ( E* x e. A ph <-> E* x e. B ph ) )
5 3 4 anbi12d
 |-  ( A = B -> ( ( E. x e. A ph /\ E* x e. A ph ) <-> ( E. x e. B ph /\ E* x e. B ph ) ) )
6 reu5
 |-  ( E! x e. A ph <-> ( E. x e. A ph /\ E* x e. A ph ) )
7 reu5
 |-  ( E! x e. B ph <-> ( E. x e. B ph /\ E* x e. B ph ) )
8 5 6 7 3bitr4g
 |-  ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )