Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleqd.1 | |- ( A = B -> ( ph <-> ps ) ) |
|
Assertion | reueqd | |- ( A = B -> ( E! x e. A ph <-> E! x e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqd.1 | |- ( A = B -> ( ph <-> ps ) ) |
|
2 | reueq1 | |- ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) ) |
|
3 | 1 | reubidv | |- ( A = B -> ( E! x e. B ph <-> E! x e. B ps ) ) |
4 | 2 3 | bitrd | |- ( A = B -> ( E! x e. A ph <-> E! x e. B ps ) ) |