Metamath Proof Explorer


Theorem reueqd

Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004)

Ref Expression
Hypothesis raleqd.1
|- ( A = B -> ( ph <-> ps ) )
Assertion reueqd
|- ( A = B -> ( E! x e. A ph <-> E! x e. B ps ) )

Proof

Step Hyp Ref Expression
1 raleqd.1
 |-  ( A = B -> ( ph <-> ps ) )
2 reueq1
 |-  ( A = B -> ( E! x e. A ph <-> E! x e. B ph ) )
3 1 reubidv
 |-  ( A = B -> ( E! x e. B ph <-> E! x e. B ps ) )
4 2 3 bitrd
 |-  ( A = B -> ( E! x e. A ph <-> E! x e. B ps ) )