Metamath Proof Explorer


Theorem reueubd

Description: Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis reueubd.1
|- ( ( ph /\ ps ) -> x e. V )
Assertion reueubd
|- ( ph -> ( E! x e. V ps <-> E! x ps ) )

Proof

Step Hyp Ref Expression
1 reueubd.1
 |-  ( ( ph /\ ps ) -> x e. V )
2 df-reu
 |-  ( E! x e. V ps <-> E! x ( x e. V /\ ps ) )
3 1 ex
 |-  ( ph -> ( ps -> x e. V ) )
4 3 pm4.71rd
 |-  ( ph -> ( ps <-> ( x e. V /\ ps ) ) )
5 4 eubidv
 |-  ( ph -> ( E! x ps <-> E! x ( x e. V /\ ps ) ) )
6 2 5 bitr4id
 |-  ( ph -> ( E! x e. V ps <-> E! x ps ) )