Description: Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reueubd.1 | |- ( ( ph /\ ps ) -> x e. V ) |
|
| Assertion | reueubd | |- ( ph -> ( E! x e. V ps <-> E! x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reueubd.1 | |- ( ( ph /\ ps ) -> x e. V ) |
|
| 2 | df-reu | |- ( E! x e. V ps <-> E! x ( x e. V /\ ps ) ) |
|
| 3 | 1 | ex | |- ( ph -> ( ps -> x e. V ) ) |
| 4 | 3 | pm4.71rd | |- ( ph -> ( ps <-> ( x e. V /\ ps ) ) ) |
| 5 | 4 | eubidv | |- ( ph -> ( E! x ps <-> E! x ( x e. V /\ ps ) ) ) |
| 6 | 2 5 | bitr4id | |- ( ph -> ( E! x e. V ps <-> E! x ps ) ) |