Metamath Proof Explorer


Theorem reuhyp

Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)

Ref Expression
Hypotheses reuhyp.1
|- ( x e. C -> B e. C )
reuhyp.2
|- ( ( x e. C /\ y e. C ) -> ( x = A <-> y = B ) )
Assertion reuhyp
|- ( x e. C -> E! y e. C x = A )

Proof

Step Hyp Ref Expression
1 reuhyp.1
 |-  ( x e. C -> B e. C )
2 reuhyp.2
 |-  ( ( x e. C /\ y e. C ) -> ( x = A <-> y = B ) )
3 tru
 |-  T.
4 1 adantl
 |-  ( ( T. /\ x e. C ) -> B e. C )
5 2 3adant1
 |-  ( ( T. /\ x e. C /\ y e. C ) -> ( x = A <-> y = B ) )
6 4 5 reuhypd
 |-  ( ( T. /\ x e. C ) -> E! y e. C x = A )
7 3 6 mpan
 |-  ( x e. C -> E! y e. C x = A )