Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuhyp.1 | |- ( x e. C -> B e. C ) |
|
reuhyp.2 | |- ( ( x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) |
||
Assertion | reuhyp | |- ( x e. C -> E! y e. C x = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuhyp.1 | |- ( x e. C -> B e. C ) |
|
2 | reuhyp.2 | |- ( ( x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) |
|
3 | tru | |- T. |
|
4 | 1 | adantl | |- ( ( T. /\ x e. C ) -> B e. C ) |
5 | 2 | 3adant1 | |- ( ( T. /\ x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) |
6 | 4 5 | reuhypd | |- ( ( T. /\ x e. C ) -> E! y e. C x = A ) |
7 | 3 6 | mpan | |- ( x e. C -> E! y e. C x = A ) |