Metamath Proof Explorer


Theorem reuimrmo

Description: Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo . (Contributed by Alexander van der Vekens, 25-Jun-2017)

Ref Expression
Assertion reuimrmo
|- ( A. x e. A ( ph -> ps ) -> ( E! x e. A ps -> E* x e. A ph ) )

Proof

Step Hyp Ref Expression
1 reurmo
 |-  ( E! x e. A ps -> E* x e. A ps )
2 rmoim
 |-  ( A. x e. A ( ph -> ps ) -> ( E* x e. A ps -> E* x e. A ph ) )
3 1 2 syl5
 |-  ( A. x e. A ( ph -> ps ) -> ( E! x e. A ps -> E* x e. A ph ) )