Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> P e. Prime ) |
2 |
|
elfzoelz |
|- ( N e. ( 1 ..^ P ) -> N e. ZZ ) |
3 |
2
|
adantl |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> N e. ZZ ) |
4 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
5 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
6 |
|
fzoval |
|- ( P e. ZZ -> ( 1 ..^ P ) = ( 1 ... ( P - 1 ) ) ) |
7 |
5 6
|
syl |
|- ( P e. Prime -> ( 1 ..^ P ) = ( 1 ... ( P - 1 ) ) ) |
8 |
7
|
eleq2d |
|- ( P e. Prime -> ( N e. ( 1 ..^ P ) <-> N e. ( 1 ... ( P - 1 ) ) ) ) |
9 |
8
|
biimpa |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> N e. ( 1 ... ( P - 1 ) ) ) |
10 |
|
fzm1ndvds |
|- ( ( P e. NN /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || N ) |
11 |
4 9 10
|
syl2an2r |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> -. P || N ) |
12 |
|
eqid |
|- ( ( N ^ ( P - 2 ) ) mod P ) = ( ( N ^ ( P - 2 ) ) mod P ) |
13 |
12
|
modprminv |
|- ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) ) |
14 |
13
|
simpld |
|- ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) |
15 |
13
|
simprd |
|- ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) |
16 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
17 |
|
fzss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( P - 1 ) ) C_ ( 0 ... ( P - 1 ) ) ) |
18 |
16 17
|
mp1i |
|- ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 0 ... ( P - 1 ) ) ) |
19 |
18
|
sseld |
|- ( P e. Prime -> ( s e. ( 1 ... ( P - 1 ) ) -> s e. ( 0 ... ( P - 1 ) ) ) ) |
20 |
19
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( s e. ( 1 ... ( P - 1 ) ) -> s e. ( 0 ... ( P - 1 ) ) ) ) |
21 |
20
|
imdistani |
|- ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 1 ... ( P - 1 ) ) ) -> ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 0 ... ( P - 1 ) ) ) ) |
22 |
12
|
modprminveq |
|- ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( s e. ( 0 ... ( P - 1 ) ) /\ ( ( N x. s ) mod P ) = 1 ) <-> s = ( ( N ^ ( P - 2 ) ) mod P ) ) ) |
23 |
22
|
biimpa |
|- ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ ( s e. ( 0 ... ( P - 1 ) ) /\ ( ( N x. s ) mod P ) = 1 ) ) -> s = ( ( N ^ ( P - 2 ) ) mod P ) ) |
24 |
23
|
eqcomd |
|- ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ ( s e. ( 0 ... ( P - 1 ) ) /\ ( ( N x. s ) mod P ) = 1 ) ) -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) |
25 |
24
|
expr |
|- ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 0 ... ( P - 1 ) ) ) -> ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) |
26 |
21 25
|
syl |
|- ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 1 ... ( P - 1 ) ) ) -> ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) |
27 |
26
|
ralrimiva |
|- ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) |
28 |
14 15 27
|
jca32 |
|- ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) ) |
29 |
1 3 11 28
|
syl3anc |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) ) |
30 |
|
oveq2 |
|- ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( N x. i ) = ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) ) |
31 |
30
|
oveq1d |
|- ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( N x. i ) mod P ) = ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
32 |
31
|
eqeq1d |
|- ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( ( N x. i ) mod P ) = 1 <-> ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) ) |
33 |
|
eqeq1 |
|- ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( i = s <-> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) |
34 |
33
|
imbi2d |
|- ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( ( ( N x. s ) mod P ) = 1 -> i = s ) <-> ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) |
35 |
34
|
ralbidv |
|- ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) <-> A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) |
36 |
32 35
|
anbi12d |
|- ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) <-> ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) ) |
37 |
36
|
rspcev |
|- ( ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) -> E. i e. ( 1 ... ( P - 1 ) ) ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) ) |
38 |
29 37
|
syl |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. i e. ( 1 ... ( P - 1 ) ) ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) ) |
39 |
|
oveq2 |
|- ( i = s -> ( N x. i ) = ( N x. s ) ) |
40 |
39
|
oveq1d |
|- ( i = s -> ( ( N x. i ) mod P ) = ( ( N x. s ) mod P ) ) |
41 |
40
|
eqeq1d |
|- ( i = s -> ( ( ( N x. i ) mod P ) = 1 <-> ( ( N x. s ) mod P ) = 1 ) ) |
42 |
41
|
reu8 |
|- ( E! i e. ( 1 ... ( P - 1 ) ) ( ( N x. i ) mod P ) = 1 <-> E. i e. ( 1 ... ( P - 1 ) ) ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) ) |
43 |
38 42
|
sylibr |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E! i e. ( 1 ... ( P - 1 ) ) ( ( N x. i ) mod P ) = 1 ) |