Metamath Proof Explorer


Theorem reupick3

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reupick3
|- ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
2 df-rex
 |-  ( E. x e. A ( ph /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) )
3 anass
 |-  ( ( ( x e. A /\ ph ) /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) )
4 3 exbii
 |-  ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) )
5 2 4 bitr4i
 |-  ( E. x e. A ( ph /\ ps ) <-> E. x ( ( x e. A /\ ph ) /\ ps ) )
6 eupick
 |-  ( ( E! x ( x e. A /\ ph ) /\ E. x ( ( x e. A /\ ph ) /\ ps ) ) -> ( ( x e. A /\ ph ) -> ps ) )
7 1 5 6 syl2anb
 |-  ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) ) -> ( ( x e. A /\ ph ) -> ps ) )
8 7 expd
 |-  ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) ) -> ( x e. A -> ( ph -> ps ) ) )
9 8 3impia
 |-  ( ( E! x e. A ph /\ E. x e. A ( ph /\ ps ) /\ x e. A ) -> ( ph -> ps ) )