Step |
Hyp |
Ref |
Expression |
1 |
|
reuprg.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
reuprg.2 |
|- ( x = B -> ( ph <-> ch ) ) |
3 |
1 2
|
reuprg0 |
|- ( ( A e. V /\ B e. W ) -> ( E! x e. { A , B } ph <-> ( ( ps /\ ( ch -> A = B ) ) \/ ( ch /\ ( ps -> A = B ) ) ) ) ) |
4 |
|
orddi |
|- ( ( ( ps /\ ( ch -> A = B ) ) \/ ( ch /\ ( ps -> A = B ) ) ) <-> ( ( ( ps \/ ch ) /\ ( ps \/ ( ps -> A = B ) ) ) /\ ( ( ( ch -> A = B ) \/ ch ) /\ ( ( ch -> A = B ) \/ ( ps -> A = B ) ) ) ) ) |
5 |
|
curryax |
|- ( ps \/ ( ps -> A = B ) ) |
6 |
5
|
biantru |
|- ( ( ps \/ ch ) <-> ( ( ps \/ ch ) /\ ( ps \/ ( ps -> A = B ) ) ) ) |
7 |
6
|
bicomi |
|- ( ( ( ps \/ ch ) /\ ( ps \/ ( ps -> A = B ) ) ) <-> ( ps \/ ch ) ) |
8 |
|
curryax |
|- ( ch \/ ( ch -> A = B ) ) |
9 |
|
orcom |
|- ( ( ( ch -> A = B ) \/ ch ) <-> ( ch \/ ( ch -> A = B ) ) ) |
10 |
8 9
|
mpbir |
|- ( ( ch -> A = B ) \/ ch ) |
11 |
10
|
biantrur |
|- ( ( ( ch -> A = B ) \/ ( ps -> A = B ) ) <-> ( ( ( ch -> A = B ) \/ ch ) /\ ( ( ch -> A = B ) \/ ( ps -> A = B ) ) ) ) |
12 |
11
|
bicomi |
|- ( ( ( ( ch -> A = B ) \/ ch ) /\ ( ( ch -> A = B ) \/ ( ps -> A = B ) ) ) <-> ( ( ch -> A = B ) \/ ( ps -> A = B ) ) ) |
13 |
|
pm4.79 |
|- ( ( ( ch -> A = B ) \/ ( ps -> A = B ) ) <-> ( ( ch /\ ps ) -> A = B ) ) |
14 |
12 13
|
bitri |
|- ( ( ( ( ch -> A = B ) \/ ch ) /\ ( ( ch -> A = B ) \/ ( ps -> A = B ) ) ) <-> ( ( ch /\ ps ) -> A = B ) ) |
15 |
7 14
|
anbi12i |
|- ( ( ( ( ps \/ ch ) /\ ( ps \/ ( ps -> A = B ) ) ) /\ ( ( ( ch -> A = B ) \/ ch ) /\ ( ( ch -> A = B ) \/ ( ps -> A = B ) ) ) ) <-> ( ( ps \/ ch ) /\ ( ( ch /\ ps ) -> A = B ) ) ) |
16 |
4 15
|
bitri |
|- ( ( ( ps /\ ( ch -> A = B ) ) \/ ( ch /\ ( ps -> A = B ) ) ) <-> ( ( ps \/ ch ) /\ ( ( ch /\ ps ) -> A = B ) ) ) |
17 |
3 16
|
bitrdi |
|- ( ( A e. V /\ B e. W ) -> ( E! x e. { A , B } ph <-> ( ( ps \/ ch ) /\ ( ( ch /\ ps ) -> A = B ) ) ) ) |