Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006) (Proof shortened by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reusn | |- ( E! x e. A ph <-> E. y { x e. A | ph } = { y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 | |- ( E! x ( x e. A /\ ph ) <-> E. y { x | ( x e. A /\ ph ) } = { y } ) |
|
| 2 | df-reu | |- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
|
| 3 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 4 | 3 | eqeq1i | |- ( { x e. A | ph } = { y } <-> { x | ( x e. A /\ ph ) } = { y } ) |
| 5 | 4 | exbii | |- ( E. y { x e. A | ph } = { y } <-> E. y { x | ( x e. A /\ ph ) } = { y } ) |
| 6 | 1 2 5 | 3bitr4i | |- ( E! x e. A ph <-> E. y { x e. A | ph } = { y } ) |