Metamath Proof Explorer


Theorem reusng

Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypothesis ralsng.1
|- ( x = A -> ( ph <-> ps ) )
Assertion reusng
|- ( A e. V -> ( E! x e. { A } ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 ralsng.1
 |-  ( x = A -> ( ph <-> ps ) )
2 nfv
 |-  F/ x ps
3 2 1 reusngf
 |-  ( A e. V -> ( E! x e. { A } ph <-> ps ) )