Step |
Hyp |
Ref |
Expression |
1 |
|
rexsngf.1 |
|- F/ x ps |
2 |
|
rexsngf.2 |
|- ( x = A -> ( ph <-> ps ) ) |
3 |
|
nfsbc1v |
|- F/ x [. c / x ]. ph |
4 |
|
nfsbc1v |
|- F/ x [. w / x ]. ph |
5 |
|
sbceq1a |
|- ( x = w -> ( ph <-> [. w / x ]. ph ) ) |
6 |
|
dfsbcq |
|- ( w = c -> ( [. w / x ]. ph <-> [. c / x ]. ph ) ) |
7 |
3 4 5 6
|
reu8nf |
|- ( E! x e. { A } ph <-> E. x e. { A } ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) ) |
8 |
|
nfcv |
|- F/_ x { A } |
9 |
|
nfv |
|- F/ x A = c |
10 |
3 9
|
nfim |
|- F/ x ( [. c / x ]. ph -> A = c ) |
11 |
8 10
|
nfralw |
|- F/ x A. c e. { A } ( [. c / x ]. ph -> A = c ) |
12 |
1 11
|
nfan |
|- F/ x ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) |
13 |
|
eqeq1 |
|- ( x = A -> ( x = c <-> A = c ) ) |
14 |
13
|
imbi2d |
|- ( x = A -> ( ( [. c / x ]. ph -> x = c ) <-> ( [. c / x ]. ph -> A = c ) ) ) |
15 |
14
|
ralbidv |
|- ( x = A -> ( A. c e. { A } ( [. c / x ]. ph -> x = c ) <-> A. c e. { A } ( [. c / x ]. ph -> A = c ) ) ) |
16 |
2 15
|
anbi12d |
|- ( x = A -> ( ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) <-> ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) ) ) |
17 |
12 16
|
rexsngf |
|- ( A e. V -> ( E. x e. { A } ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) <-> ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) ) ) |
18 |
|
nfv |
|- F/ c ( [. A / x ]. ph -> A = A ) |
19 |
|
dfsbcq |
|- ( c = A -> ( [. c / x ]. ph <-> [. A / x ]. ph ) ) |
20 |
|
eqeq2 |
|- ( c = A -> ( A = c <-> A = A ) ) |
21 |
19 20
|
imbi12d |
|- ( c = A -> ( ( [. c / x ]. ph -> A = c ) <-> ( [. A / x ]. ph -> A = A ) ) ) |
22 |
18 21
|
ralsngf |
|- ( A e. V -> ( A. c e. { A } ( [. c / x ]. ph -> A = c ) <-> ( [. A / x ]. ph -> A = A ) ) ) |
23 |
22
|
anbi2d |
|- ( A e. V -> ( ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) <-> ( ps /\ ( [. A / x ]. ph -> A = A ) ) ) ) |
24 |
|
eqidd |
|- ( [. A / x ]. ph -> A = A ) |
25 |
24
|
biantru |
|- ( ps <-> ( ps /\ ( [. A / x ]. ph -> A = A ) ) ) |
26 |
23 25
|
bitr4di |
|- ( A e. V -> ( ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) <-> ps ) ) |
27 |
17 26
|
bitrd |
|- ( A e. V -> ( E. x e. { A } ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) <-> ps ) ) |
28 |
7 27
|
bitrid |
|- ( A e. V -> ( E! x e. { A } ph <-> ps ) ) |