| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexsngf.1 |
|- F/ x ps |
| 2 |
|
rexsngf.2 |
|- ( x = A -> ( ph <-> ps ) ) |
| 3 |
|
nfsbc1v |
|- F/ x [. c / x ]. ph |
| 4 |
|
nfsbc1v |
|- F/ x [. w / x ]. ph |
| 5 |
|
sbceq1a |
|- ( x = w -> ( ph <-> [. w / x ]. ph ) ) |
| 6 |
|
dfsbcq |
|- ( w = c -> ( [. w / x ]. ph <-> [. c / x ]. ph ) ) |
| 7 |
3 4 5 6
|
reu8nf |
|- ( E! x e. { A } ph <-> E. x e. { A } ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) ) |
| 8 |
|
nfcv |
|- F/_ x { A } |
| 9 |
|
nfv |
|- F/ x A = c |
| 10 |
3 9
|
nfim |
|- F/ x ( [. c / x ]. ph -> A = c ) |
| 11 |
8 10
|
nfralw |
|- F/ x A. c e. { A } ( [. c / x ]. ph -> A = c ) |
| 12 |
1 11
|
nfan |
|- F/ x ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) |
| 13 |
|
eqeq1 |
|- ( x = A -> ( x = c <-> A = c ) ) |
| 14 |
13
|
imbi2d |
|- ( x = A -> ( ( [. c / x ]. ph -> x = c ) <-> ( [. c / x ]. ph -> A = c ) ) ) |
| 15 |
14
|
ralbidv |
|- ( x = A -> ( A. c e. { A } ( [. c / x ]. ph -> x = c ) <-> A. c e. { A } ( [. c / x ]. ph -> A = c ) ) ) |
| 16 |
2 15
|
anbi12d |
|- ( x = A -> ( ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) <-> ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) ) ) |
| 17 |
12 16
|
rexsngf |
|- ( A e. V -> ( E. x e. { A } ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) <-> ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) ) ) |
| 18 |
|
nfv |
|- F/ c ( [. A / x ]. ph -> A = A ) |
| 19 |
|
dfsbcq |
|- ( c = A -> ( [. c / x ]. ph <-> [. A / x ]. ph ) ) |
| 20 |
|
eqeq2 |
|- ( c = A -> ( A = c <-> A = A ) ) |
| 21 |
19 20
|
imbi12d |
|- ( c = A -> ( ( [. c / x ]. ph -> A = c ) <-> ( [. A / x ]. ph -> A = A ) ) ) |
| 22 |
18 21
|
ralsngf |
|- ( A e. V -> ( A. c e. { A } ( [. c / x ]. ph -> A = c ) <-> ( [. A / x ]. ph -> A = A ) ) ) |
| 23 |
22
|
anbi2d |
|- ( A e. V -> ( ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) <-> ( ps /\ ( [. A / x ]. ph -> A = A ) ) ) ) |
| 24 |
|
eqidd |
|- ( [. A / x ]. ph -> A = A ) |
| 25 |
24
|
biantru |
|- ( ps <-> ( ps /\ ( [. A / x ]. ph -> A = A ) ) ) |
| 26 |
23 25
|
bitr4di |
|- ( A e. V -> ( ( ps /\ A. c e. { A } ( [. c / x ]. ph -> A = c ) ) <-> ps ) ) |
| 27 |
17 26
|
bitrd |
|- ( A e. V -> ( E. x e. { A } ( ph /\ A. c e. { A } ( [. c / x ]. ph -> x = c ) ) <-> ps ) ) |
| 28 |
7 27
|
bitrid |
|- ( A e. V -> ( E! x e. { A } ph <-> ps ) ) |