| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2a1 |
|- ( X = 0 -> ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) ) |
| 2 |
|
sqrtcl |
|- ( X e. CC -> ( sqrt ` X ) e. CC ) |
| 3 |
2
|
adantr |
|- ( ( X e. CC /\ -. X = 0 ) -> ( sqrt ` X ) e. CC ) |
| 4 |
2
|
negcld |
|- ( X e. CC -> -u ( sqrt ` X ) e. CC ) |
| 5 |
4
|
adantr |
|- ( ( X e. CC /\ -. X = 0 ) -> -u ( sqrt ` X ) e. CC ) |
| 6 |
2
|
eqnegd |
|- ( X e. CC -> ( ( sqrt ` X ) = -u ( sqrt ` X ) <-> ( sqrt ` X ) = 0 ) ) |
| 7 |
|
simpl |
|- ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> X e. CC ) |
| 8 |
|
simpr |
|- ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> ( sqrt ` X ) = 0 ) |
| 9 |
7 8
|
sqr00d |
|- ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> X = 0 ) |
| 10 |
9
|
ex |
|- ( X e. CC -> ( ( sqrt ` X ) = 0 -> X = 0 ) ) |
| 11 |
6 10
|
sylbid |
|- ( X e. CC -> ( ( sqrt ` X ) = -u ( sqrt ` X ) -> X = 0 ) ) |
| 12 |
11
|
necon3bd |
|- ( X e. CC -> ( -. X = 0 -> ( sqrt ` X ) =/= -u ( sqrt ` X ) ) ) |
| 13 |
12
|
imp |
|- ( ( X e. CC /\ -. X = 0 ) -> ( sqrt ` X ) =/= -u ( sqrt ` X ) ) |
| 14 |
3 5 13
|
3jca |
|- ( ( X e. CC /\ -. X = 0 ) -> ( ( sqrt ` X ) e. CC /\ -u ( sqrt ` X ) e. CC /\ ( sqrt ` X ) =/= -u ( sqrt ` X ) ) ) |
| 15 |
|
sqrtth |
|- ( X e. CC -> ( ( sqrt ` X ) ^ 2 ) = X ) |
| 16 |
|
sqneg |
|- ( ( sqrt ` X ) e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) |
| 17 |
2 16
|
syl |
|- ( X e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) |
| 18 |
17 15
|
eqtrd |
|- ( X e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = X ) |
| 19 |
15 18
|
jca |
|- ( X e. CC -> ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) ) |
| 20 |
19
|
adantr |
|- ( ( X e. CC /\ -. X = 0 ) -> ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) ) |
| 21 |
|
oveq1 |
|- ( x = ( sqrt ` X ) -> ( x ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) |
| 22 |
21
|
eqeq1d |
|- ( x = ( sqrt ` X ) -> ( ( x ^ 2 ) = X <-> ( ( sqrt ` X ) ^ 2 ) = X ) ) |
| 23 |
|
oveq1 |
|- ( x = -u ( sqrt ` X ) -> ( x ^ 2 ) = ( -u ( sqrt ` X ) ^ 2 ) ) |
| 24 |
23
|
eqeq1d |
|- ( x = -u ( sqrt ` X ) -> ( ( x ^ 2 ) = X <-> ( -u ( sqrt ` X ) ^ 2 ) = X ) ) |
| 25 |
22 24
|
2nreu |
|- ( ( ( sqrt ` X ) e. CC /\ -u ( sqrt ` X ) e. CC /\ ( sqrt ` X ) =/= -u ( sqrt ` X ) ) -> ( ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) -> -. E! x e. CC ( x ^ 2 ) = X ) ) |
| 26 |
14 20 25
|
sylc |
|- ( ( X e. CC /\ -. X = 0 ) -> -. E! x e. CC ( x ^ 2 ) = X ) |
| 27 |
26
|
pm2.21d |
|- ( ( X e. CC /\ -. X = 0 ) -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) |
| 28 |
27
|
expcom |
|- ( -. X = 0 -> ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) ) |
| 29 |
1 28
|
pm2.61i |
|- ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) |
| 30 |
|
2nn |
|- 2 e. NN |
| 31 |
|
0cnd |
|- ( 2 e. NN -> 0 e. CC ) |
| 32 |
|
oveq1 |
|- ( x = 0 -> ( x ^ 2 ) = ( 0 ^ 2 ) ) |
| 33 |
32
|
eqeq1d |
|- ( x = 0 -> ( ( x ^ 2 ) = 0 <-> ( 0 ^ 2 ) = 0 ) ) |
| 34 |
|
eqeq1 |
|- ( x = 0 -> ( x = y <-> 0 = y ) ) |
| 35 |
34
|
imbi2d |
|- ( x = 0 -> ( ( ( y ^ 2 ) = 0 -> x = y ) <-> ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) |
| 36 |
35
|
ralbidv |
|- ( x = 0 -> ( A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) <-> A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) |
| 37 |
33 36
|
anbi12d |
|- ( x = 0 -> ( ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) <-> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) ) |
| 38 |
37
|
adantl |
|- ( ( 2 e. NN /\ x = 0 ) -> ( ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) <-> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) ) |
| 39 |
|
0exp |
|- ( 2 e. NN -> ( 0 ^ 2 ) = 0 ) |
| 40 |
|
sqeq0 |
|- ( y e. CC -> ( ( y ^ 2 ) = 0 <-> y = 0 ) ) |
| 41 |
40
|
biimpd |
|- ( y e. CC -> ( ( y ^ 2 ) = 0 -> y = 0 ) ) |
| 42 |
|
eqcom |
|- ( 0 = y <-> y = 0 ) |
| 43 |
41 42
|
imbitrrdi |
|- ( y e. CC -> ( ( y ^ 2 ) = 0 -> 0 = y ) ) |
| 44 |
43
|
adantl |
|- ( ( 2 e. NN /\ y e. CC ) -> ( ( y ^ 2 ) = 0 -> 0 = y ) ) |
| 45 |
44
|
ralrimiva |
|- ( 2 e. NN -> A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) |
| 46 |
39 45
|
jca |
|- ( 2 e. NN -> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) |
| 47 |
31 38 46
|
rspcedvd |
|- ( 2 e. NN -> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 48 |
30 47
|
mp1i |
|- ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 49 |
|
eqeq2 |
|- ( X = 0 -> ( ( x ^ 2 ) = X <-> ( x ^ 2 ) = 0 ) ) |
| 50 |
|
eqeq2 |
|- ( X = 0 -> ( ( y ^ 2 ) = X <-> ( y ^ 2 ) = 0 ) ) |
| 51 |
50
|
imbi1d |
|- ( X = 0 -> ( ( ( y ^ 2 ) = X -> x = y ) <-> ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 52 |
51
|
ralbidv |
|- ( X = 0 -> ( A. y e. CC ( ( y ^ 2 ) = X -> x = y ) <-> A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) |
| 53 |
49 52
|
anbi12d |
|- ( X = 0 -> ( ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) <-> ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) ) |
| 54 |
53
|
rexbidv |
|- ( X = 0 -> ( E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) <-> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) ) |
| 55 |
48 54
|
mpbird |
|- ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) |
| 56 |
55
|
a1i |
|- ( X e. CC -> ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) ) |
| 57 |
|
oveq1 |
|- ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) |
| 58 |
57
|
eqeq1d |
|- ( x = y -> ( ( x ^ 2 ) = X <-> ( y ^ 2 ) = X ) ) |
| 59 |
58
|
reu8 |
|- ( E! x e. CC ( x ^ 2 ) = X <-> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) |
| 60 |
56 59
|
imbitrrdi |
|- ( X e. CC -> ( X = 0 -> E! x e. CC ( x ^ 2 ) = X ) ) |
| 61 |
29 60
|
impbid |
|- ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X <-> X = 0 ) ) |