| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2a1 |  |-  ( X = 0 -> ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) ) | 
						
							| 2 |  | sqrtcl |  |-  ( X e. CC -> ( sqrt ` X ) e. CC ) | 
						
							| 3 | 2 | adantr |  |-  ( ( X e. CC /\ -. X = 0 ) -> ( sqrt ` X ) e. CC ) | 
						
							| 4 | 2 | negcld |  |-  ( X e. CC -> -u ( sqrt ` X ) e. CC ) | 
						
							| 5 | 4 | adantr |  |-  ( ( X e. CC /\ -. X = 0 ) -> -u ( sqrt ` X ) e. CC ) | 
						
							| 6 | 2 | eqnegd |  |-  ( X e. CC -> ( ( sqrt ` X ) = -u ( sqrt ` X ) <-> ( sqrt ` X ) = 0 ) ) | 
						
							| 7 |  | simpl |  |-  ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> X e. CC ) | 
						
							| 8 |  | simpr |  |-  ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> ( sqrt ` X ) = 0 ) | 
						
							| 9 | 7 8 | sqr00d |  |-  ( ( X e. CC /\ ( sqrt ` X ) = 0 ) -> X = 0 ) | 
						
							| 10 | 9 | ex |  |-  ( X e. CC -> ( ( sqrt ` X ) = 0 -> X = 0 ) ) | 
						
							| 11 | 6 10 | sylbid |  |-  ( X e. CC -> ( ( sqrt ` X ) = -u ( sqrt ` X ) -> X = 0 ) ) | 
						
							| 12 | 11 | necon3bd |  |-  ( X e. CC -> ( -. X = 0 -> ( sqrt ` X ) =/= -u ( sqrt ` X ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( X e. CC /\ -. X = 0 ) -> ( sqrt ` X ) =/= -u ( sqrt ` X ) ) | 
						
							| 14 | 3 5 13 | 3jca |  |-  ( ( X e. CC /\ -. X = 0 ) -> ( ( sqrt ` X ) e. CC /\ -u ( sqrt ` X ) e. CC /\ ( sqrt ` X ) =/= -u ( sqrt ` X ) ) ) | 
						
							| 15 |  | sqrtth |  |-  ( X e. CC -> ( ( sqrt ` X ) ^ 2 ) = X ) | 
						
							| 16 |  | sqneg |  |-  ( ( sqrt ` X ) e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) | 
						
							| 17 | 2 16 | syl |  |-  ( X e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) | 
						
							| 18 | 17 15 | eqtrd |  |-  ( X e. CC -> ( -u ( sqrt ` X ) ^ 2 ) = X ) | 
						
							| 19 | 15 18 | jca |  |-  ( X e. CC -> ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( X e. CC /\ -. X = 0 ) -> ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) ) | 
						
							| 21 |  | oveq1 |  |-  ( x = ( sqrt ` X ) -> ( x ^ 2 ) = ( ( sqrt ` X ) ^ 2 ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( x = ( sqrt ` X ) -> ( ( x ^ 2 ) = X <-> ( ( sqrt ` X ) ^ 2 ) = X ) ) | 
						
							| 23 |  | oveq1 |  |-  ( x = -u ( sqrt ` X ) -> ( x ^ 2 ) = ( -u ( sqrt ` X ) ^ 2 ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( x = -u ( sqrt ` X ) -> ( ( x ^ 2 ) = X <-> ( -u ( sqrt ` X ) ^ 2 ) = X ) ) | 
						
							| 25 | 22 24 | 2nreu |  |-  ( ( ( sqrt ` X ) e. CC /\ -u ( sqrt ` X ) e. CC /\ ( sqrt ` X ) =/= -u ( sqrt ` X ) ) -> ( ( ( ( sqrt ` X ) ^ 2 ) = X /\ ( -u ( sqrt ` X ) ^ 2 ) = X ) -> -. E! x e. CC ( x ^ 2 ) = X ) ) | 
						
							| 26 | 14 20 25 | sylc |  |-  ( ( X e. CC /\ -. X = 0 ) -> -. E! x e. CC ( x ^ 2 ) = X ) | 
						
							| 27 | 26 | pm2.21d |  |-  ( ( X e. CC /\ -. X = 0 ) -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) | 
						
							| 28 | 27 | expcom |  |-  ( -. X = 0 -> ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) ) | 
						
							| 29 | 1 28 | pm2.61i |  |-  ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X -> X = 0 ) ) | 
						
							| 30 |  | 2nn |  |-  2 e. NN | 
						
							| 31 |  | 0cnd |  |-  ( 2 e. NN -> 0 e. CC ) | 
						
							| 32 |  | oveq1 |  |-  ( x = 0 -> ( x ^ 2 ) = ( 0 ^ 2 ) ) | 
						
							| 33 | 32 | eqeq1d |  |-  ( x = 0 -> ( ( x ^ 2 ) = 0 <-> ( 0 ^ 2 ) = 0 ) ) | 
						
							| 34 |  | eqeq1 |  |-  ( x = 0 -> ( x = y <-> 0 = y ) ) | 
						
							| 35 | 34 | imbi2d |  |-  ( x = 0 -> ( ( ( y ^ 2 ) = 0 -> x = y ) <-> ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) | 
						
							| 36 | 35 | ralbidv |  |-  ( x = 0 -> ( A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) <-> A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) | 
						
							| 37 | 33 36 | anbi12d |  |-  ( x = 0 -> ( ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) <-> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( 2 e. NN /\ x = 0 ) -> ( ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) <-> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) ) | 
						
							| 39 |  | 0exp |  |-  ( 2 e. NN -> ( 0 ^ 2 ) = 0 ) | 
						
							| 40 |  | sqeq0 |  |-  ( y e. CC -> ( ( y ^ 2 ) = 0 <-> y = 0 ) ) | 
						
							| 41 | 40 | biimpd |  |-  ( y e. CC -> ( ( y ^ 2 ) = 0 -> y = 0 ) ) | 
						
							| 42 |  | eqcom |  |-  ( 0 = y <-> y = 0 ) | 
						
							| 43 | 41 42 | imbitrrdi |  |-  ( y e. CC -> ( ( y ^ 2 ) = 0 -> 0 = y ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( 2 e. NN /\ y e. CC ) -> ( ( y ^ 2 ) = 0 -> 0 = y ) ) | 
						
							| 45 | 44 | ralrimiva |  |-  ( 2 e. NN -> A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) | 
						
							| 46 | 39 45 | jca |  |-  ( 2 e. NN -> ( ( 0 ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> 0 = y ) ) ) | 
						
							| 47 | 31 38 46 | rspcedvd |  |-  ( 2 e. NN -> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) | 
						
							| 48 | 30 47 | mp1i |  |-  ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) | 
						
							| 49 |  | eqeq2 |  |-  ( X = 0 -> ( ( x ^ 2 ) = X <-> ( x ^ 2 ) = 0 ) ) | 
						
							| 50 |  | eqeq2 |  |-  ( X = 0 -> ( ( y ^ 2 ) = X <-> ( y ^ 2 ) = 0 ) ) | 
						
							| 51 | 50 | imbi1d |  |-  ( X = 0 -> ( ( ( y ^ 2 ) = X -> x = y ) <-> ( ( y ^ 2 ) = 0 -> x = y ) ) ) | 
						
							| 52 | 51 | ralbidv |  |-  ( X = 0 -> ( A. y e. CC ( ( y ^ 2 ) = X -> x = y ) <-> A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) | 
						
							| 53 | 49 52 | anbi12d |  |-  ( X = 0 -> ( ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) <-> ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) ) | 
						
							| 54 | 53 | rexbidv |  |-  ( X = 0 -> ( E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) <-> E. x e. CC ( ( x ^ 2 ) = 0 /\ A. y e. CC ( ( y ^ 2 ) = 0 -> x = y ) ) ) ) | 
						
							| 55 | 48 54 | mpbird |  |-  ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) | 
						
							| 56 | 55 | a1i |  |-  ( X e. CC -> ( X = 0 -> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) ) | 
						
							| 57 |  | oveq1 |  |-  ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) | 
						
							| 58 | 57 | eqeq1d |  |-  ( x = y -> ( ( x ^ 2 ) = X <-> ( y ^ 2 ) = X ) ) | 
						
							| 59 | 58 | reu8 |  |-  ( E! x e. CC ( x ^ 2 ) = X <-> E. x e. CC ( ( x ^ 2 ) = X /\ A. y e. CC ( ( y ^ 2 ) = X -> x = y ) ) ) | 
						
							| 60 | 56 59 | imbitrrdi |  |-  ( X e. CC -> ( X = 0 -> E! x e. CC ( x ^ 2 ) = X ) ) | 
						
							| 61 | 29 60 | impbid |  |-  ( X e. CC -> ( E! x e. CC ( x ^ 2 ) = X <-> X = 0 ) ) |