Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | reuss | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> E! x e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ph -> ph ) |
|
2 | 1 | rgenw | |- A. x e. A ( ph -> ph ) |
3 | reuss2 | |- ( ( ( A C_ B /\ A. x e. A ( ph -> ph ) ) /\ ( E. x e. A ph /\ E! x e. B ph ) ) -> E! x e. A ph ) |
|
4 | 2 3 | mpanl2 | |- ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) -> E! x e. A ph ) |
5 | 4 | 3impb | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> E! x e. A ph ) |