Metamath Proof Explorer


Theorem reuss

Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999)

Ref Expression
Assertion reuss
|- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> E! x e. A ph )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ph -> ph )
2 1 rgenw
 |-  A. x e. A ( ph -> ph )
3 reuss2
 |-  ( ( ( A C_ B /\ A. x e. A ( ph -> ph ) ) /\ ( E. x e. A ph /\ E! x e. B ph ) ) -> E! x e. A ph )
4 2 3 mpanl2
 |-  ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) -> E! x e. A ph )
5 4 3impb
 |-  ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> E! x e. A ph )