Step |
Hyp |
Ref |
Expression |
1 |
|
reusv3.1 |
|- ( y = z -> ( ph <-> ps ) ) |
2 |
|
reusv3.2 |
|- ( y = z -> C = D ) |
3 |
2
|
eqeq2d |
|- ( y = z -> ( x = C <-> x = D ) ) |
4 |
1 3
|
imbi12d |
|- ( y = z -> ( ( ph -> x = C ) <-> ( ps -> x = D ) ) ) |
5 |
4
|
cbvralvw |
|- ( A. y e. B ( ph -> x = C ) <-> A. z e. B ( ps -> x = D ) ) |
6 |
5
|
biimpi |
|- ( A. y e. B ( ph -> x = C ) -> A. z e. B ( ps -> x = D ) ) |
7 |
|
raaanv |
|- ( A. y e. B A. z e. B ( ( ph -> x = C ) /\ ( ps -> x = D ) ) <-> ( A. y e. B ( ph -> x = C ) /\ A. z e. B ( ps -> x = D ) ) ) |
8 |
|
anim12 |
|- ( ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> ( ( ph /\ ps ) -> ( x = C /\ x = D ) ) ) |
9 |
|
eqtr2 |
|- ( ( x = C /\ x = D ) -> C = D ) |
10 |
8 9
|
syl6 |
|- ( ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> ( ( ph /\ ps ) -> C = D ) ) |
11 |
10
|
2ralimi |
|- ( A. y e. B A. z e. B ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |
12 |
7 11
|
sylbir |
|- ( ( A. y e. B ( ph -> x = C ) /\ A. z e. B ( ps -> x = D ) ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |
13 |
6 12
|
mpdan |
|- ( A. y e. B ( ph -> x = C ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |
14 |
13
|
rexlimivw |
|- ( E. x e. A A. y e. B ( ph -> x = C ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |