Description: Alternate proof for reutru . (Contributed by Zhi Wang, 23-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | reutruALT | |- ( E! x x e. A <-> E! x e. A T. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rextru | |- ( E. x x e. A <-> E. x e. A T. ) |
|
2 | rmotru | |- ( E* x x e. A <-> E* x e. A T. ) |
|
3 | 1 2 | anbi12i | |- ( ( E. x x e. A /\ E* x x e. A ) <-> ( E. x e. A T. /\ E* x e. A T. ) ) |
4 | df-eu | |- ( E! x x e. A <-> ( E. x x e. A /\ E* x x e. A ) ) |
|
5 | reu5 | |- ( E! x e. A T. <-> ( E. x e. A T. /\ E* x e. A T. ) ) |
|
6 | 3 4 5 | 3bitr4i | |- ( E! x x e. A <-> E! x e. A T. ) |