Metamath Proof Explorer


Theorem reuv

Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010)

Ref Expression
Assertion reuv
|- ( E! x e. _V ph <-> E! x ph )

Proof

Step Hyp Ref Expression
1 df-reu
 |-  ( E! x e. _V ph <-> E! x ( x e. _V /\ ph ) )
2 vex
 |-  x e. _V
3 2 biantrur
 |-  ( ph <-> ( x e. _V /\ ph ) )
4 3 eubii
 |-  ( E! x ph <-> E! x ( x e. _V /\ ph ) )
5 1 4 bitr4i
 |-  ( E! x e. _V ph <-> E! x ph )