Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 14-Nov-2004) (Revised by NM, 16-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuxfr.1 | |- ( y e. C -> A e. B ) |
|
reuxfr.2 | |- ( x e. B -> E* y e. C x = A ) |
||
Assertion | reuxfr | |- ( E! x e. B E. y e. C ( x = A /\ ph ) <-> E! y e. C ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr.1 | |- ( y e. C -> A e. B ) |
|
2 | reuxfr.2 | |- ( x e. B -> E* y e. C x = A ) |
|
3 | 1 | adantl | |- ( ( T. /\ y e. C ) -> A e. B ) |
4 | 2 | adantl | |- ( ( T. /\ x e. B ) -> E* y e. C x = A ) |
5 | 3 4 | reuxfrd | |- ( T. -> ( E! x e. B E. y e. C ( x = A /\ ph ) <-> E! y e. C ph ) ) |
6 | 5 | mptru | |- ( E! x e. B E. y e. C ( x = A /\ ph ) <-> E! y e. C ph ) |