Metamath Proof Explorer


Theorem reuxfr

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 14-Nov-2004) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypotheses reuxfr.1
|- ( y e. C -> A e. B )
reuxfr.2
|- ( x e. B -> E* y e. C x = A )
Assertion reuxfr
|- ( E! x e. B E. y e. C ( x = A /\ ph ) <-> E! y e. C ph )

Proof

Step Hyp Ref Expression
1 reuxfr.1
 |-  ( y e. C -> A e. B )
2 reuxfr.2
 |-  ( x e. B -> E* y e. C x = A )
3 1 adantl
 |-  ( ( T. /\ y e. C ) -> A e. B )
4 2 adantl
 |-  ( ( T. /\ x e. B ) -> E* y e. C x = A )
5 3 4 reuxfrd
 |-  ( T. -> ( E! x e. B E. y e. C ( x = A /\ ph ) <-> E! y e. C ph ) )
6 5 mptru
 |-  ( E! x e. B E. y e. C ( x = A /\ ph ) <-> E! y e. C ph )