Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhyp to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuxfr1.1 | |- ( y e. C -> A e. B ) |
|
reuxfr1.2 | |- ( x e. B -> E! y e. C x = A ) |
||
reuxfr1.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | reuxfr1 | |- ( E! x e. B ph <-> E! y e. C ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr1.1 | |- ( y e. C -> A e. B ) |
|
2 | reuxfr1.2 | |- ( x e. B -> E! y e. C x = A ) |
|
3 | reuxfr1.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | 1 | adantl | |- ( ( T. /\ y e. C ) -> A e. B ) |
5 | 2 | adantl | |- ( ( T. /\ x e. B ) -> E! y e. C x = A ) |
6 | 4 5 3 | reuxfr1ds | |- ( T. -> ( E! x e. B ph <-> E! y e. C ps ) ) |
7 | 6 | mptru | |- ( E! x e. B ph <-> E! y e. C ps ) |