Metamath Proof Explorer


Theorem reuxfr1

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhyp to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004)

Ref Expression
Hypotheses reuxfr1.1
|- ( y e. C -> A e. B )
reuxfr1.2
|- ( x e. B -> E! y e. C x = A )
reuxfr1.3
|- ( x = A -> ( ph <-> ps ) )
Assertion reuxfr1
|- ( E! x e. B ph <-> E! y e. C ps )

Proof

Step Hyp Ref Expression
1 reuxfr1.1
 |-  ( y e. C -> A e. B )
2 reuxfr1.2
 |-  ( x e. B -> E! y e. C x = A )
3 reuxfr1.3
 |-  ( x = A -> ( ph <-> ps ) )
4 1 adantl
 |-  ( ( T. /\ y e. C ) -> A e. B )
5 2 adantl
 |-  ( ( T. /\ x e. B ) -> E! y e. C x = A )
6 4 5 3 reuxfr1ds
 |-  ( T. -> ( E! x e. B ph <-> E! y e. C ps ) )
7 6 mptru
 |-  ( E! x e. B ph <-> E! y e. C ps )