Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhypd to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuxfr1ds.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
reuxfr1ds.2 | |- ( ( ph /\ x e. B ) -> E! y e. C x = A ) |
||
reuxfr1ds.3 | |- ( x = A -> ( ps <-> ch ) ) |
||
Assertion | reuxfr1ds | |- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr1ds.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
2 | reuxfr1ds.2 | |- ( ( ph /\ x e. B ) -> E! y e. C x = A ) |
|
3 | reuxfr1ds.3 | |- ( x = A -> ( ps <-> ch ) ) |
|
4 | 3 | adantl | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
5 | 1 2 4 | reuxfr1d | |- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |