Metamath Proof Explorer


Theorem reuxfr1ds

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhypd to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypotheses reuxfr1ds.1
|- ( ( ph /\ y e. C ) -> A e. B )
reuxfr1ds.2
|- ( ( ph /\ x e. B ) -> E! y e. C x = A )
reuxfr1ds.3
|- ( x = A -> ( ps <-> ch ) )
Assertion reuxfr1ds
|- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) )

Proof

Step Hyp Ref Expression
1 reuxfr1ds.1
 |-  ( ( ph /\ y e. C ) -> A e. B )
2 reuxfr1ds.2
 |-  ( ( ph /\ x e. B ) -> E! y e. C x = A )
3 reuxfr1ds.3
 |-  ( x = A -> ( ps <-> ch ) )
4 3 adantl
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
5 1 2 4 reuxfr1d
 |-  ( ph -> ( E! x e. B ps <-> E! y e. C ch ) )