| Step |
Hyp |
Ref |
Expression |
| 1 |
|
revval |
|- ( W e. Word A -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
| 2 |
|
wrdf |
|- ( W e. Word A -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
| 3 |
2
|
adantr |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
| 4 |
|
simpr |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ..^ ( # ` W ) ) ) |
| 5 |
|
lencl |
|- ( W e. Word A -> ( # ` W ) e. NN0 ) |
| 6 |
5
|
adantr |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN0 ) |
| 7 |
6
|
nn0zd |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. ZZ ) |
| 8 |
|
fzoval |
|- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 9 |
7 8
|
syl |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 10 |
4 9
|
eleqtrd |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 11 |
|
fznn0sub2 |
|- ( x e. ( 0 ... ( ( # ` W ) - 1 ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 12 |
10 11
|
syl |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 13 |
12 9
|
eleqtrrd |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) |
| 14 |
3 13
|
ffvelcdmd |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) e. A ) |
| 15 |
14
|
fmpttd |
|- ( W e. Word A -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) : ( 0 ..^ ( # ` W ) ) --> A ) |
| 16 |
|
iswrdi |
|- ( ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) : ( 0 ..^ ( # ` W ) ) --> A -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) e. Word A ) |
| 17 |
15 16
|
syl |
|- ( W e. Word A -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) e. Word A ) |
| 18 |
1 17
|
eqeltrd |
|- ( W e. Word A -> ( reverse ` W ) e. Word A ) |