Step |
Hyp |
Ref |
Expression |
1 |
|
wrdfn |
|- ( W e. Word A -> W Fn ( 0 ..^ ( # ` W ) ) ) |
2 |
1
|
ad2antrr |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
3 |
|
lencl |
|- ( W e. Word A -> ( # ` W ) e. NN0 ) |
4 |
3
|
nn0zd |
|- ( W e. Word A -> ( # ` W ) e. ZZ ) |
5 |
|
fzoval |
|- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
6 |
4 5
|
syl |
|- ( W e. Word A -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
7 |
6
|
adantr |
|- ( ( W e. Word A /\ F : A --> B ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
8 |
7
|
eleq2d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` W ) ) <-> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) ) |
9 |
8
|
biimpa |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
10 |
|
fznn0sub2 |
|- ( x e. ( 0 ... ( ( # ` W ) - 1 ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
11 |
9 10
|
syl |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
12 |
7
|
adantr |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
13 |
11 12
|
eleqtrrd |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) |
14 |
|
fvco2 |
|- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` W ) - 1 ) - x ) ) = ( F ` ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
15 |
2 13 14
|
syl2anc |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` W ) - 1 ) - x ) ) = ( F ` ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
16 |
|
lenco |
|- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
17 |
16
|
oveq1d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( ( # ` ( F o. W ) ) - 1 ) = ( ( # ` W ) - 1 ) ) |
18 |
17
|
oveq1d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( ( ( # ` ( F o. W ) ) - 1 ) - x ) = ( ( ( # ` W ) - 1 ) - x ) ) |
19 |
18
|
adantr |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` ( F o. W ) ) - 1 ) - x ) = ( ( ( # ` W ) - 1 ) - x ) ) |
20 |
19
|
fveq2d |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) = ( ( F o. W ) ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
21 |
|
revfv |
|- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` x ) = ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
22 |
21
|
adantlr |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` x ) = ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
23 |
22
|
fveq2d |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( reverse ` W ) ` x ) ) = ( F ` ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
24 |
15 20 23
|
3eqtr4d |
|- ( ( ( W e. Word A /\ F : A --> B ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) = ( F ` ( ( reverse ` W ) ` x ) ) ) |
25 |
24
|
mpteq2dva |
|- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
26 |
16
|
oveq2d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( 0 ..^ ( # ` ( F o. W ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
27 |
26
|
mpteq1d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
28 |
|
revlen |
|- ( W e. Word A -> ( # ` ( reverse ` W ) ) = ( # ` W ) ) |
29 |
28
|
adantr |
|- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( reverse ` W ) ) = ( # ` W ) ) |
30 |
29
|
oveq2d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( 0 ..^ ( # ` ( reverse ` W ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
31 |
30
|
mpteq1d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
32 |
25 27 31
|
3eqtr4rd |
|- ( ( W e. Word A /\ F : A --> B ) -> ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) = ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
33 |
|
simpr |
|- ( ( W e. Word A /\ F : A --> B ) -> F : A --> B ) |
34 |
|
revcl |
|- ( W e. Word A -> ( reverse ` W ) e. Word A ) |
35 |
|
wrdf |
|- ( ( reverse ` W ) e. Word A -> ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) |
36 |
34 35
|
syl |
|- ( W e. Word A -> ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) |
37 |
36
|
adantr |
|- ( ( W e. Word A /\ F : A --> B ) -> ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) |
38 |
|
fcompt |
|- ( ( F : A --> B /\ ( reverse ` W ) : ( 0 ..^ ( # ` ( reverse ` W ) ) ) --> A ) -> ( F o. ( reverse ` W ) ) = ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
39 |
33 37 38
|
syl2anc |
|- ( ( W e. Word A /\ F : A --> B ) -> ( F o. ( reverse ` W ) ) = ( x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) |-> ( F ` ( ( reverse ` W ) ` x ) ) ) ) |
40 |
|
ffun |
|- ( F : A --> B -> Fun F ) |
41 |
|
simpl |
|- ( ( W e. Word A /\ F : A --> B ) -> W e. Word A ) |
42 |
|
cofunexg |
|- ( ( Fun F /\ W e. Word A ) -> ( F o. W ) e. _V ) |
43 |
40 41 42
|
syl2an2 |
|- ( ( W e. Word A /\ F : A --> B ) -> ( F o. W ) e. _V ) |
44 |
|
revval |
|- ( ( F o. W ) e. _V -> ( reverse ` ( F o. W ) ) = ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
45 |
43 44
|
syl |
|- ( ( W e. Word A /\ F : A --> B ) -> ( reverse ` ( F o. W ) ) = ( x e. ( 0 ..^ ( # ` ( F o. W ) ) ) |-> ( ( F o. W ) ` ( ( ( # ` ( F o. W ) ) - 1 ) - x ) ) ) ) |
46 |
32 39 45
|
3eqtr4d |
|- ( ( W e. Word A /\ F : A --> B ) -> ( F o. ( reverse ` W ) ) = ( reverse ` ( F o. W ) ) ) |