| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( W e. V -> W e. _V ) | 
						
							| 2 |  | fveq2 |  |-  ( w = W -> ( # ` w ) = ( # ` W ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 4 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 5 | 2 | oveq1d |  |-  ( w = W -> ( ( # ` w ) - 1 ) = ( ( # ` W ) - 1 ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( w = W -> ( ( ( # ` w ) - 1 ) - x ) = ( ( ( # ` W ) - 1 ) - x ) ) | 
						
							| 7 | 4 6 | fveq12d |  |-  ( w = W -> ( w ` ( ( ( # ` w ) - 1 ) - x ) ) = ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) | 
						
							| 8 | 3 7 | mpteq12dv |  |-  ( w = W -> ( x e. ( 0 ..^ ( # ` w ) ) |-> ( w ` ( ( ( # ` w ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) | 
						
							| 9 |  | df-reverse |  |-  reverse = ( w e. _V |-> ( x e. ( 0 ..^ ( # ` w ) ) |-> ( w ` ( ( ( # ` w ) - 1 ) - x ) ) ) ) | 
						
							| 10 |  | ovex |  |-  ( 0 ..^ ( # ` W ) ) e. _V | 
						
							| 11 | 10 | mptex |  |-  ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) e. _V | 
						
							| 12 | 8 9 11 | fvmpt |  |-  ( W e. _V -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) | 
						
							| 13 | 1 12 | syl |  |-  ( W e. V -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |