| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( A e. V -> A e. _V ) | 
						
							| 2 |  | prssi |  |-  ( ( x e. A /\ y e. A ) -> { x , y } C_ A ) | 
						
							| 3 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 | 4 | a1i |  |-  ( x =/= y -> (/) e. _V ) | 
						
							| 6 |  | 1oex |  |-  1o e. _V | 
						
							| 7 | 6 | a1i |  |-  ( x =/= y -> 1o e. _V ) | 
						
							| 8 |  | vex |  |-  x e. _V | 
						
							| 9 | 8 | a1i |  |-  ( x =/= y -> x e. _V ) | 
						
							| 10 |  | vex |  |-  y e. _V | 
						
							| 11 | 10 | a1i |  |-  ( x =/= y -> y e. _V ) | 
						
							| 12 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 13 | 12 | necomi |  |-  (/) =/= 1o | 
						
							| 14 | 13 | a1i |  |-  ( x =/= y -> (/) =/= 1o ) | 
						
							| 15 |  | id |  |-  ( x =/= y -> x =/= y ) | 
						
							| 16 | 5 7 9 11 14 15 | en2prd |  |-  ( x =/= y -> { (/) , 1o } ~~ { x , y } ) | 
						
							| 17 | 3 16 | eqbrtrid |  |-  ( x =/= y -> 2o ~~ { x , y } ) | 
						
							| 18 |  | endom |  |-  ( 2o ~~ { x , y } -> 2o ~<_ { x , y } ) | 
						
							| 19 | 17 18 | syl |  |-  ( x =/= y -> 2o ~<_ { x , y } ) | 
						
							| 20 |  | domssr |  |-  ( ( A e. _V /\ { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) | 
						
							| 21 | 20 | 3expib |  |-  ( A e. _V -> ( ( { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) ) | 
						
							| 22 | 2 19 21 | syl2ani |  |-  ( A e. _V -> ( ( ( x e. A /\ y e. A ) /\ x =/= y ) -> 2o ~<_ A ) ) | 
						
							| 23 | 22 | expd |  |-  ( A e. _V -> ( ( x e. A /\ y e. A ) -> ( x =/= y -> 2o ~<_ A ) ) ) | 
						
							| 24 | 23 | rexlimdvv |  |-  ( A e. _V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) | 
						
							| 25 | 1 24 | syl |  |-  ( A e. V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( A e. V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |