Metamath Proof Explorer


Theorem rexabOLD

Description: Obsolete version of rexab as of 2-Nov-2024. (Contributed by Mario Carneiro, 23-Jan-2014) (Revised by Mario Carneiro, 3-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralab.1
|- ( y = x -> ( ph <-> ps ) )
Assertion rexabOLD
|- ( E. x e. { y | ph } ch <-> E. x ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 ralab.1
 |-  ( y = x -> ( ph <-> ps ) )
2 df-rex
 |-  ( E. x e. { y | ph } ch <-> E. x ( x e. { y | ph } /\ ch ) )
3 vex
 |-  x e. _V
4 3 1 elab
 |-  ( x e. { y | ph } <-> ps )
5 4 anbi1i
 |-  ( ( x e. { y | ph } /\ ch ) <-> ( ps /\ ch ) )
6 5 exbii
 |-  ( E. x ( x e. { y | ph } /\ ch ) <-> E. x ( ps /\ ch ) )
7 2 6 bitri
 |-  ( E. x e. { y | ph } ch <-> E. x ( ps /\ ch ) )