| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 2 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 3 |
|
xaddval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |
| 5 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
| 6 |
|
ifnefalse |
|- ( A =/= +oo -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) |
| 7 |
5 6
|
syl |
|- ( A e. RR -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) |
| 8 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
| 9 |
|
ifnefalse |
|- ( A =/= -oo -> if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
| 10 |
8 9
|
syl |
|- ( A e. RR -> if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
| 11 |
7 10
|
eqtrd |
|- ( A e. RR -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
| 12 |
|
renepnf |
|- ( B e. RR -> B =/= +oo ) |
| 13 |
|
ifnefalse |
|- ( B =/= +oo -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = if ( B = -oo , -oo , ( A + B ) ) ) |
| 14 |
12 13
|
syl |
|- ( B e. RR -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = if ( B = -oo , -oo , ( A + B ) ) ) |
| 15 |
|
renemnf |
|- ( B e. RR -> B =/= -oo ) |
| 16 |
|
ifnefalse |
|- ( B =/= -oo -> if ( B = -oo , -oo , ( A + B ) ) = ( A + B ) ) |
| 17 |
15 16
|
syl |
|- ( B e. RR -> if ( B = -oo , -oo , ( A + B ) ) = ( A + B ) ) |
| 18 |
14 17
|
eqtrd |
|- ( B e. RR -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = ( A + B ) ) |
| 19 |
11 18
|
sylan9eq |
|- ( ( A e. RR /\ B e. RR ) -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = ( A + B ) ) |
| 20 |
4 19
|
eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |