Metamath Proof Explorer


Theorem rexaddd

Description: The extended real addition operation when both arguments are real. Deduction version of rexadd . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rexaddd.1
|- ( ph -> A e. RR )
rexaddd.2
|- ( ph -> B e. RR )
Assertion rexaddd
|- ( ph -> ( A +e B ) = ( A + B ) )

Proof

Step Hyp Ref Expression
1 rexaddd.1
 |-  ( ph -> A e. RR )
2 rexaddd.2
 |-  ( ph -> B e. RR )
3 rexadd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A +e B ) = ( A + B ) )