Description: The extended real addition operation when both arguments are real. Deduction version of rexadd . (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexaddd.1 | |- ( ph -> A e. RR ) |
|
rexaddd.2 | |- ( ph -> B e. RR ) |
||
Assertion | rexaddd | |- ( ph -> ( A +e B ) = ( A + B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexaddd.1 | |- ( ph -> A e. RR ) |
|
2 | rexaddd.2 | |- ( ph -> B e. RR ) |
|
3 | rexadd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A +e B ) = ( A + B ) ) |