Description: The extended real addition operation when both arguments are real. Deduction version of rexadd . (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexaddd.1 | |- ( ph -> A e. RR ) |
|
| rexaddd.2 | |- ( ph -> B e. RR ) |
||
| Assertion | rexaddd | |- ( ph -> ( A +e B ) = ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexaddd.1 | |- ( ph -> A e. RR ) |
|
| 2 | rexaddd.2 | |- ( ph -> B e. RR ) |
|
| 3 | rexadd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A +e B ) = ( A + B ) ) |