Metamath Proof Explorer


Theorem rexanid

Description: Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018) (Proof shortened by Wolf Lammen, 8-Jul-2023)

Ref Expression
Assertion rexanid
|- ( E. x e. A ( x e. A /\ ph ) <-> E. x e. A ph )

Proof

Step Hyp Ref Expression
1 ibar
 |-  ( x e. A -> ( ph <-> ( x e. A /\ ph ) ) )
2 1 bicomd
 |-  ( x e. A -> ( ( x e. A /\ ph ) <-> ph ) )
3 2 rexbiia
 |-  ( E. x e. A ( x e. A /\ ph ) <-> E. x e. A ph )