Description: Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv . (Contributed by NM, 27-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexbid.1 | |- F/ x ph |
|
| rexbid.2 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | rexbid | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbid.1 | |- F/ x ph |
|
| 2 | rexbid.2 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3 | 2 | adantr | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
| 4 | 1 3 | rexbida | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |