Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexbid.1 | |- F/ x ph |
|
rexbid.2 | |- ( ph -> ( ps <-> ch ) ) |
||
Assertion | rexbid | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbid.1 | |- F/ x ph |
|
2 | rexbid.2 | |- ( ph -> ( ps <-> ch ) ) |
|
3 | 2 | adantr | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
4 | 1 3 | rexbida | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |