Metamath Proof Explorer


Theorem rexbid

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998)

Ref Expression
Hypotheses rexbid.1
|- F/ x ph
rexbid.2
|- ( ph -> ( ps <-> ch ) )
Assertion rexbid
|- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rexbid.1
 |-  F/ x ph
2 rexbid.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
4 1 3 rexbida
 |-  ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )