Metamath Proof Explorer


Theorem rexbida

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003)

Ref Expression
Hypotheses rexbida.1
|- F/ x ph
rexbida.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rexbida
|- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rexbida.1
 |-  F/ x ph
2 rexbida.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 pm5.32da
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
4 1 3 exbid
 |-  ( ph -> ( E. x ( x e. A /\ ps ) <-> E. x ( x e. A /\ ch ) ) )
5 df-rex
 |-  ( E. x e. A ps <-> E. x ( x e. A /\ ps ) )
6 df-rex
 |-  ( E. x e. A ch <-> E. x ( x e. A /\ ch ) )
7 4 5 6 3bitr4g
 |-  ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )