Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexbida.1 | |- F/ x ph |
|
| rexbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
| Assertion | rexbida | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbida.1 | |- F/ x ph |
|
| 2 | rexbida.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 3 | 2 | pm5.32da | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
| 4 | 1 3 | exbid | |- ( ph -> ( E. x ( x e. A /\ ps ) <-> E. x ( x e. A /\ ch ) ) ) |
| 5 | df-rex | |- ( E. x e. A ps <-> E. x ( x e. A /\ ps ) ) |
|
| 6 | df-rex | |- ( E. x e. A ch <-> E. x ( x e. A /\ ch ) ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |