Metamath Proof Explorer


Theorem rexbidv2

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis rexbidv2.1
|- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
Assertion rexbidv2
|- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 rexbidv2.1
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
2 1 exbidv
 |-  ( ph -> ( E. x ( x e. A /\ ps ) <-> E. x ( x e. B /\ ch ) ) )
3 df-rex
 |-  ( E. x e. A ps <-> E. x ( x e. A /\ ps ) )
4 df-rex
 |-  ( E. x e. B ch <-> E. x ( x e. B /\ ch ) )
5 2 3 4 3bitr4g
 |-  ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )