Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexbidv2.1 | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) ) |
|
Assertion | rexbidv2 | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbidv2.1 | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) ) |
|
2 | 1 | exbidv | |- ( ph -> ( E. x ( x e. A /\ ps ) <-> E. x ( x e. B /\ ch ) ) ) |
3 | df-rex | |- ( E. x e. A ps <-> E. x ( x e. A /\ ps ) ) |
|
4 | df-rex | |- ( E. x e. B ch <-> E. x ( x e. B /\ ch ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |