Description: Alternate proof of rexbidv , shorter but requires more axioms. (Contributed by NM, 20-Nov-1994) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexbidvALT.1 | |- ( ph -> ( ps <-> ch ) ) | |
| Assertion | rexbidvALT | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexbidvALT.1 | |- ( ph -> ( ps <-> ch ) ) | |
| 2 | nfv | |- F/ x ph | |
| 3 | 2 1 | rexbid | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |