Metamath Proof Explorer


Theorem rexbidvALT

Description: Alternate proof of rexbidv , shorter but requires more axioms. (Contributed by NM, 20-Nov-1994) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis rexbidvALT.1
|- ( ph -> ( ps <-> ch ) )
Assertion rexbidvALT
|- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rexbidvALT.1
 |-  ( ph -> ( ps <-> ch ) )
2 nfv
 |-  F/ x ph
3 2 1 rexbid
 |-  ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )