Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019) (Proof shortened by Wolf Lammen, 10-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexbidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
Assertion | rexbidva | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
2 | 1 | pm5.32da | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
3 | 2 | rexbidv2 | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |