Metamath Proof Explorer


Theorem rexbidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019) (Proof shortened by Wolf Lammen, 10-Dec-2019)

Ref Expression
Hypothesis rexbidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rexbidva
|- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rexbidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 1 pm5.32da
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
3 2 rexbidv2
 |-  ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )