Description: Alternate proof of rexbidva , shorter but requires more axioms. (Contributed by NM, 9-Mar-1997) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexbidvaALT.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| Assertion | rexbidvaALT | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbidvaALT.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 2 | nfv | |- F/ x ph |
|
| 3 | 2 1 | rexbida | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |