Metamath Proof Explorer


Theorem rexbidvaALT

Description: Alternate proof of rexbidva , shorter but requires more axioms. (Contributed by NM, 9-Mar-1997) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis rexbidvaALT.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rexbidvaALT
|- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rexbidvaALT.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 nfv
 |-  F/ x ph
3 2 1 rexbida
 |-  ( ph -> ( E. x e. A ps <-> E. x e. A ch ) )