Description: Alternate proof of rexbidva , shorter but requires more axioms. (Contributed by NM, 9-Mar-1997) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexbidvaALT.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
Assertion | rexbidvaALT | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbidvaALT.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
2 | nfv | |- F/ x ph |
|
3 | 2 1 | rexbida | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |