Metamath Proof Explorer


Theorem rexbiia

Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999)

Ref Expression
Hypothesis rexbiia.1
|- ( x e. A -> ( ph <-> ps ) )
Assertion rexbiia
|- ( E. x e. A ph <-> E. x e. A ps )

Proof

Step Hyp Ref Expression
1 rexbiia.1
 |-  ( x e. A -> ( ph <-> ps ) )
2 1 pm5.32i
 |-  ( ( x e. A /\ ph ) <-> ( x e. A /\ ps ) )
3 2 rexbii2
 |-  ( E. x e. A ph <-> E. x e. A ps )