Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexbiia.1 | |- ( x e. A -> ( ph <-> ps ) ) |
|
| Assertion | rexbiia | |- ( E. x e. A ph <-> E. x e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbiia.1 | |- ( x e. A -> ( ph <-> ps ) ) |
|
| 2 | 1 | pm5.32i | |- ( ( x e. A /\ ph ) <-> ( x e. A /\ ps ) ) |
| 3 | 2 | rexbii2 | |- ( E. x e. A ph <-> E. x e. A ps ) |