Metamath Proof Explorer


Theorem rexcom4

Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019)

Ref Expression
Assertion rexcom4
|- ( E. x e. A E. y ph <-> E. y E. x e. A ph )

Proof

Step Hyp Ref Expression
1 df-rex
 |-  ( E. x e. A E. y ph <-> E. x ( x e. A /\ E. y ph ) )
2 19.42v
 |-  ( E. y ( x e. A /\ ph ) <-> ( x e. A /\ E. y ph ) )
3 2 bicomi
 |-  ( ( x e. A /\ E. y ph ) <-> E. y ( x e. A /\ ph ) )
4 3 exbii
 |-  ( E. x ( x e. A /\ E. y ph ) <-> E. x E. y ( x e. A /\ ph ) )
5 excom
 |-  ( E. x E. y ( x e. A /\ ph ) <-> E. y E. x ( x e. A /\ ph ) )
6 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
7 6 bicomi
 |-  ( E. x ( x e. A /\ ph ) <-> E. x e. A ph )
8 7 exbii
 |-  ( E. y E. x ( x e. A /\ ph ) <-> E. y E. x e. A ph )
9 5 8 bitri
 |-  ( E. x E. y ( x e. A /\ ph ) <-> E. y E. x e. A ph )
10 4 9 bitri
 |-  ( E. x ( x e. A /\ E. y ph ) <-> E. y E. x e. A ph )
11 1 10 bitri
 |-  ( E. x e. A E. y ph <-> E. y E. x e. A ph )