Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
|- ( A ~~ suc M <-> E. f f : A -1-1-onto-> suc M ) |
2 |
|
19.42v |
|- ( E. f ( M e. _om /\ f : A -1-1-onto-> suc M ) <-> ( M e. _om /\ E. f f : A -1-1-onto-> suc M ) ) |
3 |
|
sucidg |
|- ( M e. _om -> M e. suc M ) |
4 |
|
f1ocnvdm |
|- ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> ( `' f ` M ) e. A ) |
5 |
4
|
ancoms |
|- ( ( M e. suc M /\ f : A -1-1-onto-> suc M ) -> ( `' f ` M ) e. A ) |
6 |
3 5
|
sylan |
|- ( ( M e. _om /\ f : A -1-1-onto-> suc M ) -> ( `' f ` M ) e. A ) |
7 |
|
vex |
|- f e. _V |
8 |
|
dif1enlem |
|- ( ( f e. _V /\ M e. _om /\ f : A -1-1-onto-> suc M ) -> ( A \ { ( `' f ` M ) } ) ~~ M ) |
9 |
7 8
|
mp3an1 |
|- ( ( M e. _om /\ f : A -1-1-onto-> suc M ) -> ( A \ { ( `' f ` M ) } ) ~~ M ) |
10 |
|
sneq |
|- ( x = ( `' f ` M ) -> { x } = { ( `' f ` M ) } ) |
11 |
10
|
difeq2d |
|- ( x = ( `' f ` M ) -> ( A \ { x } ) = ( A \ { ( `' f ` M ) } ) ) |
12 |
11
|
breq1d |
|- ( x = ( `' f ` M ) -> ( ( A \ { x } ) ~~ M <-> ( A \ { ( `' f ` M ) } ) ~~ M ) ) |
13 |
12
|
rspcev |
|- ( ( ( `' f ` M ) e. A /\ ( A \ { ( `' f ` M ) } ) ~~ M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
14 |
6 9 13
|
syl2anc |
|- ( ( M e. _om /\ f : A -1-1-onto-> suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
15 |
14
|
exlimiv |
|- ( E. f ( M e. _om /\ f : A -1-1-onto-> suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
16 |
2 15
|
sylbir |
|- ( ( M e. _om /\ E. f f : A -1-1-onto-> suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |
17 |
1 16
|
sylan2b |
|- ( ( M e. _om /\ A ~~ suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |