| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bren |  |-  ( A ~~ suc M <-> E. f f : A -1-1-onto-> suc M ) | 
						
							| 2 |  | 19.42v |  |-  ( E. f ( M e. _om /\ f : A -1-1-onto-> suc M ) <-> ( M e. _om /\ E. f f : A -1-1-onto-> suc M ) ) | 
						
							| 3 |  | sucidg |  |-  ( M e. _om -> M e. suc M ) | 
						
							| 4 |  | f1ocnvdm |  |-  ( ( f : A -1-1-onto-> suc M /\ M e. suc M ) -> ( `' f ` M ) e. A ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( M e. suc M /\ f : A -1-1-onto-> suc M ) -> ( `' f ` M ) e. A ) | 
						
							| 6 | 3 5 | sylan |  |-  ( ( M e. _om /\ f : A -1-1-onto-> suc M ) -> ( `' f ` M ) e. A ) | 
						
							| 7 |  | vex |  |-  f e. _V | 
						
							| 8 |  | dif1enlemOLD |  |-  ( ( f e. _V /\ M e. _om /\ f : A -1-1-onto-> suc M ) -> ( A \ { ( `' f ` M ) } ) ~~ M ) | 
						
							| 9 | 7 8 | mp3an1 |  |-  ( ( M e. _om /\ f : A -1-1-onto-> suc M ) -> ( A \ { ( `' f ` M ) } ) ~~ M ) | 
						
							| 10 |  | sneq |  |-  ( x = ( `' f ` M ) -> { x } = { ( `' f ` M ) } ) | 
						
							| 11 | 10 | difeq2d |  |-  ( x = ( `' f ` M ) -> ( A \ { x } ) = ( A \ { ( `' f ` M ) } ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( x = ( `' f ` M ) -> ( ( A \ { x } ) ~~ M <-> ( A \ { ( `' f ` M ) } ) ~~ M ) ) | 
						
							| 13 | 12 | rspcev |  |-  ( ( ( `' f ` M ) e. A /\ ( A \ { ( `' f ` M ) } ) ~~ M ) -> E. x e. A ( A \ { x } ) ~~ M ) | 
						
							| 14 | 6 9 13 | syl2anc |  |-  ( ( M e. _om /\ f : A -1-1-onto-> suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) | 
						
							| 15 | 14 | exlimiv |  |-  ( E. f ( M e. _om /\ f : A -1-1-onto-> suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) | 
						
							| 16 | 2 15 | sylbir |  |-  ( ( M e. _om /\ E. f f : A -1-1-onto-> suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) | 
						
							| 17 | 1 16 | sylan2b |  |-  ( ( M e. _om /\ A ~~ suc M ) -> E. x e. A ( A \ { x } ) ~~ M ) |