Step |
Hyp |
Ref |
Expression |
1 |
|
eldifpr |
|- ( x e. ( A \ { B , C } ) <-> ( x e. A /\ x =/= B /\ x =/= C ) ) |
2 |
|
3anass |
|- ( ( x e. A /\ x =/= B /\ x =/= C ) <-> ( x e. A /\ ( x =/= B /\ x =/= C ) ) ) |
3 |
1 2
|
bitri |
|- ( x e. ( A \ { B , C } ) <-> ( x e. A /\ ( x =/= B /\ x =/= C ) ) ) |
4 |
3
|
anbi1i |
|- ( ( x e. ( A \ { B , C } ) /\ ph ) <-> ( ( x e. A /\ ( x =/= B /\ x =/= C ) ) /\ ph ) ) |
5 |
|
anass |
|- ( ( ( x e. A /\ ( x =/= B /\ x =/= C ) ) /\ ph ) <-> ( x e. A /\ ( ( x =/= B /\ x =/= C ) /\ ph ) ) ) |
6 |
|
df-3an |
|- ( ( x =/= B /\ x =/= C /\ ph ) <-> ( ( x =/= B /\ x =/= C ) /\ ph ) ) |
7 |
6
|
bicomi |
|- ( ( ( x =/= B /\ x =/= C ) /\ ph ) <-> ( x =/= B /\ x =/= C /\ ph ) ) |
8 |
7
|
anbi2i |
|- ( ( x e. A /\ ( ( x =/= B /\ x =/= C ) /\ ph ) ) <-> ( x e. A /\ ( x =/= B /\ x =/= C /\ ph ) ) ) |
9 |
5 8
|
bitri |
|- ( ( ( x e. A /\ ( x =/= B /\ x =/= C ) ) /\ ph ) <-> ( x e. A /\ ( x =/= B /\ x =/= C /\ ph ) ) ) |
10 |
4 9
|
bitri |
|- ( ( x e. ( A \ { B , C } ) /\ ph ) <-> ( x e. A /\ ( x =/= B /\ x =/= C /\ ph ) ) ) |
11 |
10
|
rexbii2 |
|- ( E. x e. ( A \ { B , C } ) ph <-> E. x e. A ( x =/= B /\ x =/= C /\ ph ) ) |