Metamath Proof Explorer


Theorem rexdifpr

Description: Restricted existential quantification over a set with two elements removed. (Contributed by Alexander van der Vekens, 7-Feb-2018) (Proof shortened by Wolf Lammen, 15-May-2025)

Ref Expression
Assertion rexdifpr
|- ( E. x e. ( A \ { B , C } ) ph <-> E. x e. A ( x =/= B /\ x =/= C /\ ph ) )

Proof

Step Hyp Ref Expression
1 anass
 |-  ( ( ( x e. A /\ ( x =/= B /\ x =/= C ) ) /\ ph ) <-> ( x e. A /\ ( ( x =/= B /\ x =/= C ) /\ ph ) ) )
2 eldifpr
 |-  ( x e. ( A \ { B , C } ) <-> ( x e. A /\ x =/= B /\ x =/= C ) )
3 3anass
 |-  ( ( x e. A /\ x =/= B /\ x =/= C ) <-> ( x e. A /\ ( x =/= B /\ x =/= C ) ) )
4 2 3 bitri
 |-  ( x e. ( A \ { B , C } ) <-> ( x e. A /\ ( x =/= B /\ x =/= C ) ) )
5 4 anbi1i
 |-  ( ( x e. ( A \ { B , C } ) /\ ph ) <-> ( ( x e. A /\ ( x =/= B /\ x =/= C ) ) /\ ph ) )
6 df-3an
 |-  ( ( x =/= B /\ x =/= C /\ ph ) <-> ( ( x =/= B /\ x =/= C ) /\ ph ) )
7 6 anbi2i
 |-  ( ( x e. A /\ ( x =/= B /\ x =/= C /\ ph ) ) <-> ( x e. A /\ ( ( x =/= B /\ x =/= C ) /\ ph ) ) )
8 1 5 7 3bitr4i
 |-  ( ( x e. ( A \ { B , C } ) /\ ph ) <-> ( x e. A /\ ( x =/= B /\ x =/= C /\ ph ) ) )
9 8 rexbii2
 |-  ( E. x e. ( A \ { B , C } ) ph <-> E. x e. A ( x =/= B /\ x =/= C /\ ph ) )