Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997) (Proof shortened by Steven Nguyen, 5-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | raleqbi1dv.1 | |- ( A = B -> ( ph <-> ps ) ) |
|
| Assertion | rexeqbi1dv | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbi1dv.1 | |- ( A = B -> ( ph <-> ps ) ) |
|
| 2 | id | |- ( A = B -> A = B ) |
|
| 3 | 2 1 | rexeqbidvv | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ps ) ) |