Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997) (Proof shortened by Steven Nguyen, 5-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleqbi1dv.1 | |- ( A = B -> ( ph <-> ps ) ) |
|
Assertion | rexeqbi1dv | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbi1dv.1 | |- ( A = B -> ( ph <-> ps ) ) |
|
2 | id | |- ( A = B -> A = B ) |
|
3 | 2 1 | rexeqbidvv | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ps ) ) |