Description: Equality deduction for restricted existential quantifier. See rexeqbidv for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbid.0 | |- F/ x ph | |
| raleqbid.1 | |- F/_ x A | ||
| raleqbid.2 | |- F/_ x B | ||
| raleqbid.3 | |- ( ph -> A = B ) | ||
| raleqbid.4 | |- ( ph -> ( ps <-> ch ) ) | ||
| Assertion | rexeqbid | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | raleqbid.0 | |- F/ x ph | |
| 2 | raleqbid.1 | |- F/_ x A | |
| 3 | raleqbid.2 | |- F/_ x B | |
| 4 | raleqbid.3 | |- ( ph -> A = B ) | |
| 5 | raleqbid.4 | |- ( ph -> ( ps <-> ch ) ) | |
| 6 | 2 3 | rexeqf | |- ( A = B -> ( E. x e. A ps <-> E. x e. B ps ) ) | 
| 7 | 4 6 | syl | |- ( ph -> ( E. x e. A ps <-> E. x e. B ps ) ) | 
| 8 | 1 5 | rexbid | |- ( ph -> ( E. x e. B ps <-> E. x e. B ch ) ) | 
| 9 | 7 8 | bitrd | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |