Metamath Proof Explorer


Theorem rexeqbidvv

Description: Version of rexeqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by Wolf Lammen, 25-Sep-2024)

Ref Expression
Hypotheses raleqbidvv.1
|- ( ph -> A = B )
raleqbidvv.2
|- ( ph -> ( ps <-> ch ) )
Assertion rexeqbidvv
|- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 raleqbidvv.1
 |-  ( ph -> A = B )
2 raleqbidvv.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 notbid
 |-  ( ph -> ( -. ps <-> -. ch ) )
4 1 3 raleqbidvv
 |-  ( ph -> ( A. x e. A -. ps <-> A. x e. B -. ch ) )
5 ralnex
 |-  ( A. x e. A -. ps <-> -. E. x e. A ps )
6 ralnex
 |-  ( A. x e. B -. ch <-> -. E. x e. B ch )
7 4 5 6 3bitr3g
 |-  ( ph -> ( -. E. x e. A ps <-> -. E. x e. B ch ) )
8 7 con4bid
 |-  ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )