Metamath Proof Explorer


Theorem rexeqbidvv

Description: Version of rexeqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by Wolf Lammen, 25-Sep-2024)

Ref Expression
Hypotheses raleqbidvv.1
|- ( ph -> A = B )
raleqbidvv.2
|- ( ph -> ( ps <-> ch ) )
Assertion rexeqbidvv
|- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )

Proof

Step Hyp Ref Expression
1 raleqbidvv.1
 |-  ( ph -> A = B )
2 raleqbidvv.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
4 1 3 rexeqbidva
 |-  ( ph -> ( E. x e. A ps <-> E. x e. B ch ) )