Description: Version of rexeqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by Wolf Lammen, 25-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqbidvv.1 | |- ( ph -> A = B ) |
|
raleqbidvv.2 | |- ( ph -> ( ps <-> ch ) ) |
||
Assertion | rexeqbidvv | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidvv.1 | |- ( ph -> A = B ) |
|
2 | raleqbidvv.2 | |- ( ph -> ( ps <-> ch ) ) |
|
3 | 2 | notbid | |- ( ph -> ( -. ps <-> -. ch ) ) |
4 | 1 3 | raleqbidvv | |- ( ph -> ( A. x e. A -. ps <-> A. x e. B -. ch ) ) |
5 | ralnex | |- ( A. x e. A -. ps <-> -. E. x e. A ps ) |
|
6 | ralnex | |- ( A. x e. B -. ch <-> -. E. x e. B ch ) |
|
7 | 4 5 6 | 3bitr3g | |- ( ph -> ( -. E. x e. A ps <-> -. E. x e. B ch ) ) |
8 | 7 | con4bid | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |